Филипов О.Ю., ст. гр. ГЭ-14д,

Матузко Ю.О., к.физ.-мат.н., доц. – научный руководитель

ОСОБЕННОСТИ НАХОЖДЕНИЯ ПЛОЩАДИ ТРЕУГОЛЬНИКА В ГЕОМЕТРИИ ЛОБАЧЕВСКОГО

Запорожская государственная инженерная академия, кафедра ВПМ

Существует несколько моделей геометрии Лобачевского, мы будем рассматривать модель Пуанкаре в круге. В этой модели плоскостью Лобачевского является внутренность единичного круга. Граница этого круга называется абсолютом. Точками являются обычные евклидовы точки, принадлежащие плоскости Лобачевского, а прямыми — дуги евклидовых окружностей, ортогональных абсолюту, и диаметры абсолюта (рис. 1). Углы измеряются как обычные евклидовы углы между кривыми.

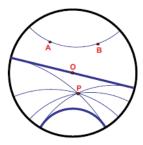


Рис. 1.

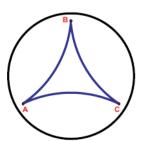


Рис. 2.

Треугольник в модели Пуанкаре в круге состоит из дуг окружностей, и сумма его углов меньше π (рис. 2). Поэтому необходимо ввести величину δ , называемую дефектом и равную $\pi - \alpha - \beta - \gamma$, где α, β, γ — углы треугольника. Легко видеть, что дефект треугольника обладает следующими свойствами:

1).
$$\delta > 0$$
; 2). $\Delta 1 = \Delta 2 \Rightarrow \delta 1 = \delta 2$; 3). $\Delta = \Delta 1 \cup \Delta 2 \Rightarrow \delta = \delta 1 + \delta 2$.

Видно, что дефект треугольника удовлетворяет всем свойствам площади. Оказывается, что в геометрии Лобачевского сумма углов представляется виде:

$$S(6) = \delta = \pi$$
.

В этом состоит одно из существенных отличий геометрии Лобачевского от геометрии Евклида: в евклидовой геометрии нельзя выразить площадь треугольника через его углы.

ЛИТЕРАТУРА:

- 1. Норден А. П. Элементарное введение в геометрию Лобачевского. М.: ГИИТЛ, 1953.
- 2. Прасолов В. В. Геометрия Лобачевского. 3-е изд. М.: МЦНМО, 2004.