Γ .А. Колобов ⁽¹⁾, профессор, к.т.н.

А.В. Елютин (2), профессор, д.т.н., академик РАН

НОВЫЕ ТЕХНОЛОГИИ ИЗВЛЕЧЕНИЯ РЕДКИХ МЕТАЛЛОВ ИЗ ВТОРИЧНОГО СЫРЬЯ

(1) Запорожская государственная инженерная академия,

Описано технології здобування тугоплавких рідкісних (ванадію, ніобию, танталу, молібдену), рідкосноземельних (європію, ітрію, неодиму, диспрозію, церію, ербію) і радіоактивних (урану, америцію) металів із різних видів вторинної сировини.

Описаны технологии извлечения тугоплавких редких (ванадия, ниобия, тантала, молибдена), редкоземельных (европия, иттрия, неодима, диспрозия, церия, эрбия) и радиоактивных (урана, америция) металлов из различных видов вторичного сырья.

Извлечение редких металлов из вторичного сырья требует использования значительно более сложных технологий по сравнению с такими обычными цветными металлами, как алюминий, магний, медь, свинец, цинк, олово и другие. Это касается редких металлов всех подгрупп: тугоплавких [1], рассеянных, легких редких, редкоземельных и радиоактивных.

Ванадий. По сравнению с другими вариантами переработки ванадийсодержащих отходов хлорная технология обеспечивает более высокое извлечение ванадия в товарную продукцию и позволяет существенно сократить материальные потоки, в том числе сточных вод, подлежащих обезвреживанию. Технологическая схема переработки отходов хлорным методом предусматривает получение в качестве товарных продуктов $VOCl_2$, $TiCl_4$ и V_2O_5 . Последняя соответствует требованиям ТУ на марки пентаоксида ванадия ВНО-1 и ВНО-2 [2].

Ванадий-хром-титановые сплавы используются для термоядерных реакторов в качестве конструкционного материала. В работе [3] изучена возможность утилизации (вторичного использования в новых реакторах и других объектах ядерной индустрии) и клиренса (снятия с учета радиоактивных материалов) таких сплавов. После использования в бланкете ванадиевые сплавы должны «остыть» в течение 20...30 лет. После этого возможно снижение мощности дозы до предела непосредственного доступа (12 мк3в/ч), если радиохимическими методами будут удалены вредные радиоактивные продукты, возникающие при активации примесей. Клиренс, в принципе, тоже возможен, если после эксплуатации будет проведено дальнейшее разделение продуктов активации титана, прежде всего радионуклида ⁴²К.

Ванадийсодержащие катализаторы используются, в частности, для рафинирования нефти. В работе [4] для извлечения никеля, молибдена и ванадия из отработанных катализаторов предлагается использовать биовыщелачивание. Исходные продукты, после промывки их ацетоном, содержали, %: Al 19,5; S 11,5; Ni 2,0; V 11,6; Mo 1,4, примеси Si, Fe, Cd, Co и Cu (< 1 %). В качестве микроорганизмов использовали серуокисляющие ацидотиобактерии. Определен следующий оптимальный режим биообработки: продолжительность 7 суток, pH 0,9...1,0, плотность пульпы – 50 г/л, количество ступеней выщелачивания – 2. Извлечение металлов в раствор в данных условиях составило, %: Ni 88,3; Mo 46,3; V 94,8. Достигнутые показатели на 8...18 %

⁽²⁾ Национальный исследовательский технологический университет «МИСиС», г. Москва, Россия

превышают соответствующие значения для чисто химического выщелачивания металлов из катализаторов растворами серной кислоты.

Для переработки отработанных ванадийсодержащих катализаторов производства серной кислоты с извлечением ванадия на уровне 93 % в работе [5] предлагается метод жидкостной экстракции ванадия (V) в солянокислой и натриевощелочной средах. В качестве экстрагента использовали Aliquat-336 (метилтриоктиламмоний хлорид), растворенный в керосине с содержанием 10 % *п*-октанола.

 $\mathit{Huoбu\~u}$. Предложенная в работе [6] технология переработки возгонов электронно-лучевого переплава алюмотермического ниобия заключается в их твердофазном окислении совместно с щелочными солями, в частности $\mathit{Na_2CO_3}$, и последующем удалении алюминия и других примесей выщелачиванием. При оптимальных параметрах процесса обжига-спекания (температура 1000...1100 °C, продолжительность 2,5...3,0 ч, отношение возгон : $\mathrm{coga}=1:1$) достигается максимальная степень превращения.

Технологическая схема переработки сложнолегированных сплавов на никелевой основе, содержащих ниобий, вольфрам и молибден, с использованием электрохимического растворения под воздействием переменного тока предложена в работе [7]. В оптимальных условиях обеспечивается степень извлечения никеля, кобальта, хрома в раствор 90...99 %, вольфрама, титана, ниобия, алюминия в твердую фазу 95...99 %, молибден распределяется между раствором и твердой фазой.

Тантал. При комплексной переработке карбидных отходов танталсодержащих твердых сплавов образуются искусственные танталовые концентраты. Солянокислая обработка чернового танталового концентрата позволяет увеличить относительное содержание в нем Ta_2O_5 с 12,3 до 23,5 % [8]. Оптимальный режим кислотной доводки концентрата следующий: концентрация HCl 25...30 %, продолжительность обработки 6 ч, отношение Ж : T = 7, температура 110 °C. Потери тантала с кислыми растворами составляют менее 5 %.

Молибден. Вторичное сырье молибдена представлено отходами собственного производства (отходы и брак обработки полуфабрикатов давлением, стружка, порошок нестандартной крупности) и амортизационным ломом. Важным источником вторичного молибдена являются также отработанные катализаторы нефтехимии [9].

В патенте Японии [10] предложен способ переработки отходов молибдена и вольфрама в слиток высокой чистоты вакуумной электронно-лучевой плавкой. Установка для этой цели включает две камеры для ввода сырья в зону плавки, вакуумную часть с двумя пушками и кокиль для непрерывного литья слитка. Мощность печи составляет 1200 кВт, производительность – 50 кг/ч, вакуум – $1,33...13,33 \cdot 10^{-2} \text{ Па. Получаемый молибденовый слиток имел размеры <math>1570 \times 470 \times 150 \text{ мм. Содержание примесей в исходном сырье и слитке составило, соответственно, <math>10^{-4} \%$: $Al \cdot 10 \text{ и } 5$; $Fe \cdot 50 \text{ и } 20$; $Ti \cdot 25000 \text{ u} < 10$; $O \cdot 111 \text{ u } 4$; $N \cdot 10 \text{ u} < 1$; $C \cdot 175 \text{ u } 25$; H, S < 1.

Одной из распространенных технологий извлечения молибдена из металлических отходов является окислительный обжиг отходов с получением MoO_3 . В работе [11] предложена следующая схема процесса пирометаллургической переработки отходов: дробление — окисление — очистка MoO_3 вакуумной сублимацией от октаоксида триурана (закиси-окиси урана). Дальнейшая переработка полученного MoO_3 определяется целью, возможностями и совместимостью с основной технологической схемой производства.

При переработке лома молибдена в триоксид молибдена в результате коррозии реактора и поддонов в продукт попадает никель (в виде $NiMoO_4$) в количестве до

0,54% (мас.) [12]. После повторной перегонки следов никеля в продукте не обнаруживается. По данным радиологического анализа, полученный MoO_3 имеет радиоактивность менее 300 Бк/кг и пригоден для повторного использования без ограничений.

В патенте Российской Федерации [13] переработку материалов с низким содержанием молибдена и вольфрама предлагается вести путем хлорирования газообразным хлором при комнатной температуре в присутствии диметилформамида при массовом соотношении перерабатываемого материала, диметилформамида и хлора, равном 1: (20...25): (25...30). Основой метода является исключительно высокая растворимость хлора в диметилформамиде, позволяющая создать насыщенную им жидкую среду, обеспечивающую протекание процесса гидрохлорирования [14]. Предлагаемая технология позволяет достичь степени извлечения молибдена до 97 % и вольфрама до 70 %, при этом процесс проходит в одну стадию и не требует подвода теплоты извне.

Фторидная технология переработки металлических отходов молибдена рассмотрена в работах [15,16]. Схема переработки молибденсодержащих отходов, загрязненных оксидами урана, включает следующие стадии: окисление металлических отходов — вакуумная сублимационная очистка MoO_3 — фторирование триоксида молибдена техническим газообразным фтором — восстановление гексафторида молибдена водородом [15]. Фторидный способ позволяет в одну-две стадии очистить получающийся продукт от сопутствующих примесей (ввиду большой разницы в давлениях паров их фторидов) и получать при водородном восстановлении MoF_6 порошки, покрытия или компактные изделия из металлического молибдена при температурах на 1000...1500 К ниже температуры плавления металла. Фторидная схема переработки отходов является замкнутой по всем технологическим продуктам, кроме молибдена и примесей.

Термодинамическим анализом системы «молибден—фтор» установлено [16], что максимальный равновесный выход MoF_6 достигается при температурах ниже 1000 К и давлении элементного фтора 0,1...1,0 МПа. Результатами кинетических исследований определено, что энергия активация фторирования составляет $7,0\pm0,5$ кДж/моль, то есть процесс лимитируется диффузией. Поэтому для оптимальной организации технологического процесса фторирования молибдена элементным фтором необходимо использовать аппараты с активным контактом на границе раздела газовой и твердой фаз. Скорость реакции будет определяться размером частиц, их пористостью, температурой и скоростью газового потока.

В некоторых случаях получаемый первичный ферромолибден используется не по прямому назначению (легирование сталей), а как сырье для извлечения из него молибдена. В работе [17] показано, что степень извлечения молибдена из загрязненного примесями ферромолибдена методом спекания с Na_2CO_3 и CaO и последующего водного выщелачивания может составить 97,5 % при следующих оптимальных условиях проведения процесса: мольное отношение $CaO:Na_2CO_3=0,76:1$, добавка смеси этих компонентов составляет 0,57 М на 100 частей порошка ферромолибдена, температура окислительного обжига – 700 °C, продолжительность – 2 ч, водное выщелачивание в течение 2 ч при температуре 98 °C и отношении K:T=3:1. При этом степень выщелачивания фосфора составила 16,2 %, мышьяка – 18,1 %, кремния – 42 %, так как CaO связывает эти примеси в малорастворимые соединения $Ca_3(PO_4)_2$, $Ca_3(AsO_4)_2$ и $CaSiO_3$.

Одной из лимитирующих стадий утилизации образующихся при вытравливании молибденовых кернов травильных молибденсодержащих растворов является вы-

парка. В результате исследований [18] установлен оптимальный режим реализации выпарки и разработана принципиальная технологическая схема процесса.

Способ регенерации молибдена и кислот из отработанного раствора травления молибденовых кернов по патенту Российской Федерации [19] заключается в том, что кислый раствор обрабатывают электромагнитным полем с частотой в области среднечастотных радиоволн, отгоняют образовавшуюся воду, отфильтровывают выпавший осадок, а выделенную кислоту возвращают в процесс травления. Установка для осуществления предлагаемого способа включает реакторный блок, состоящий из реактора, генератора электромагнитного поля, индуктора и согласующего устройства, узел фильтрации, емкости для растворов, трубопроводы, запорную и регулирующую арматуру и ректификационную колонну для очистки воды, непосредственно соединенную с реактором. Техническим результатом изобретения является повышение степени извлечения молибдена с учетом циркуляции до 98...99 %. Процесс экологически безопасен, производственные сточные воды не образуются.

Для извлечения молибдена, вольфрама и рения из различных растворов гидрометаллургической переработки рудного и вторичного сырья используют сорбцию на ионообменных смолах. При правильном выборе сорбента и десорбирующего раствора изотермы сорбции металлов удовлетворительно описываются уравнением Лэнгмюра, а в области низких концентраций уравнение Лэнгмюра переходит в уравнение Генри. Показано, что уравнение Лэнгмюра позволяет проводить сравнительную оценку селективности ионитов по отношению к извлекаемому иону, основываясь на формах изотермических зависимостей. Для разработки скоростных методов аммиачной десорбции исследованных тугоплавких металлов в работе [20] выведено обобщенное уравнение, позволяющее определить время полного снятия металлов с ионита и перевода их в десорбат.

В работе [21] показано, что при сорбции ионов молибдена смолами АН-1, АВ-17, АН-108 ТР, АН-2В и другими наилучшие результаты обеспечивают акриловые смолы, содержащие активные функциональные группы этилендиаминов и диэтилентриаминов. Максимальная сорбция ионов молибдена (VI) этими ионообменными смолами достигается при pH = 2...3.

Известная технология переработки отходов вольфрама, молибдена и рения электрохимическим растворением в аммиачных электролитах может быть оптимизирована за счет использования переменного тока вместо проведения процесса в режиме постоянного тока. Методом математического планирования эксперимента в работе [22] был определен оптимальный режим электрохимического растворения отходов молибдена под действием переменного тока в аммиачном электролите: температура ~ 30 °C, частота тока 20...50 Гц, плотность тока 9...10 кА/м² и выше, выход по току составляет 85...94 %.

Процесс извлечения молибдена из отработанных катализаторов гидродесульфуризации, содержащих, %: Co 2,24; Mo 9,93; Al 24,09; S 9,12, изучен в работе [23]. Поскольку в составе минеральных фаз катализатора находятся, кроме оксидов, сульфиды (CoS, MoS), необходимо в состав выщелачивателя (H_2SO_4) вводить окислители. Их эффективность оценивается рядом: $H_2O_2 > HNO_3 > NaClO_3 > FeCl_3 > NaOCl$. Извлечение молибдена составило 99,87 % при условии соблюдения оптимального режима: плотность пульпы -1 %, концентрация H_2SO_4 0,5 M, количество H_2O_2 - пятикратное против стехиометрического, крупность материала 51...70 мкм, температура 50 °C, продолжительность -2 ч.

Редкоземельные металлы (РЗМ). Подгруппу РЗМ составляют 17 элементов, входящих в III группу периодической системы: скандий, иттрий, лантан и семейство лантаноидов: 14 элементов от церия до лютеция. Области применения РЗМ условно делят на две категории: для обычных и особых технологий. К первой категории относятся: катализаторы, металлургия, производство обычных стекол и керамики, ко второй – люминофоры, высококачественные, в том числе оптические, стекла и керамика, электроника, постоянные магниты.

Многие технологии извлечения РЗМ из различных видов вторичного сырья описаны в работе [24]. Однако эта проблема продолжает оставаться актуальной, в связи с чем привлекает к себе постоянное внимание исследователей. Так, в работе [25] рассмотрены перспективы извлечения редкоземельных металлов из скрапа железных сплавов, легированных РЗМ. С применением жидкостной экстракции в этой работе получены оксиды неодима и диспрозия чистотой выше 99 % с извлечением более 92 %.

Технологические аспекты процесса извлечения P3M из скрапа никель-гидридных отработанных аккумуляторов, содержащих никель, кобальт, редкоземельные и другие металлы, представлены в работе [26]. На первом этапе P3M селективно выщелачивают из скрапа 2 M раствором H_2SO_4 при температуре 20 °C. Затем, на втором этапе раствор нейтрализуют NaOH и осаждают соответствующие сульфаты редкоземельных металлов. Общее извлечение P3M на данном переделе составляет ~ 80 %.

Телевизионные трубки и компьютерные мониторы содержат в составе своих покрытий порошки РЗМ, главным образом европия и иттрия. В работе [27] показано, что в процессе выщелачивания электронного скрапа получается раствор, содержащий, г/л: 16.5 иттрия, 0.55 европия, 59.0 цинка, 0.20 железа, 131.0 SO_4^{2-} , 0.20 кальция и 2.5 алюминия. Из такого раствора РЗМ можно извлечь обычными гидрометаллургическими методами.

Для производства высокоэнергетических постоянных магнитов на основе системы *Nd-Fe-B* в работе [28] разработана «сухая» фторидная технология, заключающаяся во фторировании исходного сырья (оксидов) элементным фтором, кальциетермическом внепечном восстановлении фторидов с получением слитков сплавов и лигатур, изготовлении магнитов методом порошковой металлургии с использованием механического или гидридного измельчения. В этой же работе предложена схема переработки образующихся отходов.

Переработка отходов производства магнитных сплавов P3M (Nd) – Fe (Co) – B и лигатур P3M – Fe по фторидной технологии с применением магнитной сепарации рассмотрено в работе [29]. Показана принципиальная возможность получения магнитной фракции в виде P3M – содержащего концентрата с извлечением P3M до 60 мас. % от остаточного содержания в шлаках восстановительной плавки фторидов металлов.

Для переработки отходов производства и скрапа постоянных магнитов на основе системы «неодим-железо-бор» $(Nd_2Fe_{14}B)$ используется технология селективного солянокислотного выщелачивания P3M, позволяющая получить на выходе Nd_2O_3 высокой степени чистоты. В работе [30] конечный продукт — оксид неодима — получали через промежуточную стадию получения оксалата.

При солянокислотном выщелачивании скрапа постоянных магнитов, изготовленных из сплава Nd-Fe-B, общее извлечение P3M превысило 92 %, при этом был получен Dy_2O_3 чистотой выше 99 %. Разделение неодима и диспрозия проводили методом жидкостной экстракции [31].

Короткий и эффективный способ извлечения неодима из скрапа сплава *Nd-Fe-B* предложен в работе [32]. Способ основан на электровосстановлении раствора выщелачивания скрапа и селективном извлечении из него неодима жидкостной экстракцией реагентом P507.

При переработке отходов железосодержащих магнитных РЗМ (*Nd*, *Dy*, *Pr*) – сплавов должна быть решена проблема отделения железистой составляющей. С этой целью в работе [33] предложено вести плавку РЗМ – содержащего шлама в углеродистом тигле при температуре 1550 °С. При этом металлическое железо образует сплав, а РЗМ остаются в форме оксидного шлака, легко отделяющегося от металла. Потери РЗМ со сплавом незначительны.

В работе [34] разработан режим растворения металлических отходов в 34...36 % - ной H_2SO_4 , которое сопровождается образованием осадка в виде сульфатного редкоземельного концентрата и железосодержащего раствора. Изучена кинетика процесса и определены оптимальные условия, при которых достигается высокая степень разделения компонентов. Предложены наиболее рациональные приемы перевода сульфатов редкоземельных элементов во фторидные соединения и в гидроксиды.

В патенте Российской Федерации [35] предложен способ переработки шлифотходов, образующихся в производстве постоянных магнитов, который включает растворение отходов в серной кислоте, выделение двойных солей РЗМ и натрия химическим осаждением и их отмывку. Затем проводят последовательно конверсию двойных солей в гидроксиды РЗМ и далее в оксалаты. После сушки и прокалки оксалатов получают оксиды с содержанием суммы РЗМ не менее 99 %. Маточные растворы после осаждения двойных солей перерабатывают с получением железистого и кобальтового кеков.

Для извлечения из бедных водных растворов иттрия, церия и эрбия использовали экстракцию с применением экстрагента, состоящего из олеиновой кислоты и разбавителя — керосина [36]. Экстракцию осуществляли при рН 4,5...5,5 в течение 10...15 мин и соотношении объемов экстрагента и водного раствора 1 : 10 в две стадии. На первой стадии экстракцию вели при содержании олеиновой кислоты в экстрагенте 5...7 об. % с разделением церия (III) и смеси иттрия (III) и эрбия (III), на второй — при содержании олеиновой кислоты в экстрагенте 15...17 об. % с разделением иттрия (III) и эрбия (III).

Из водных растворов, образующихся при переработке бедного минерального или техногенного сырья, для извлечения эрбия может быть применен метод ионной флотации с использованием в качестве собирателя додецилсульфата натрия в концентрации, соответствующей стехиометрической реакции:

$$Me^{3+} + 3DS^{-} \Rightarrow Me[DS_{-}]_{3}, \tag{1}$$

где Me^{3+} - катион трехвалентного металла, DS^- - додецилсульфат-ион.

Для максимального извлечения эрбия ионную флотацию осуществляют при pH 6,4 [37].

Радиоактивные металлы. Для повышения степени извлечения урана при переработке уран-молибденовой композиции в патенте Российской Федерации [38] предлагается способ, который включает окисление материала при температуре 750... 850 °C, его растворение в 2...3 М растворе щелочи при температуре кипения, отделение раствора от твердого остатка декантацией, растворение твердого остатка в 4...

6 М азотной кислоте при температуре кипения, пероксидное осаждение урана из раствора и прокаливание осажденного пероксида урана при температуре 750...850 °C.

В другом патенте Российской Федерации [39] для извлечения урана при переработке уранфторсодержащих отходов предлагается способ, включающий получение из них растворов, стадию концентрирования растворов путем осаждения урана гидроксидом натрия при рН 9...10 и температуре 60...90 °C и последующего растворения осадка в азотной кислоте, экстракцию урана из концентрированных растворов с использованием трибутилфосфата в углеводородном разбавителе, реэкстракцию и осаждение полиуранатов аммония из полученных реэкстрактов.

Для получения оксида урана при переработке урановых ТВЭЛов, покрытых сплавом «магний-бериллий», патентуется [40] способ, заключающийся в следующем: механическое удаление невоспроизводящих элементов конструкции ТВЭЛов; их фрагментация; удаление защитной оболочки из сплава «магний-бериллий» при нагреве фрагментов до температуры 500...700 °C в вакууме не ниже 133,322·10⁻⁴ Па в течение 2...5 ч; конденсация паров магния и окисление металлического урана в среде кислородсодержащего агента при температуре 500...900 °C в реакционной емкости, образующей замкнутое пространство с внутренним объемом, составляющим 2...4 объема загружаемого металлического урана, и имеющей отверстия, суммарная площадь которых составляет от 5 до 25 % от площади поверхности реакционной емкости. После достижения температуры 500...900 °C внешний источник энергии отключают.

Один из радиоактивных металлов – америций может быть извлечен из растворов следующим способом [41]. Вначале из раствора, содержащего примеси, соосаждают оксалат америция на носителе – оксалате кальция, и осадок носителя прокаливают до оксидов. Затем растворением оксидов в азотной кислоте получают азотнокислый раствор, из которого осуществляют экстракцию америция с использованием твердого экстрагента на основе диизооктилметилфосфоната с последующей реэкстракцией. Получение оксалата америция ведут осаждением его из упаренного реэкстракта. Способ может быть использован в технологии извлечения америция в виде диоксида из оборотов производства и радиоактивных отходов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Вторичные тугоплавкие редкие металлы (цирконий, гафний, ванадий, ниобий, тантал) [Текст] / А. В. Елютин, Г. А. Колобов, С. И. Давыдов, К. А. Печерица. Запорожье : Просвіта, 2012. 120 с. Библиогр. : с. 103-119. ISBN 978-966-653-318-3.
- 2. Хлорная технология переработки ванадийсодержащих отходов с получением товарных продуктов [Текст] / *Ю. П. Кудрявский*, С. И. Потеха, Ю. Ф. Трапезников и др. // Цветная металлургия. 2000. № 8-9. С. 24-26.
- 3. A zero-waste option: recycling and clearance of activated vanadium alloys [Text] / *M. Zucchetti*, S. A. Bartenev, A. Ciampichetti etc. // Nucl. Fusion. 2007. 47, № 7. Pp. S477- S479.
- 4. Bioleaching of vanadium rich spent refinery catalysts using sulfur oxidizing lithotrophs [Text] / *D. Mishra*, D. J. Kim, D. E. Ralph etc. // Hydrometallurgy. 2007. 88, № 1-4. P. 202-209.
- 5. *El-Nadi*, *Y. A.* A comparative study of vanadium extraction by Aliquat-336 from acidic and alkaline media with application to spent catalyst [Text] / Y. A. El-Nadi, N. S. Awwad, A. A. Nayl // Int. J. Miner. Process. − 2009. − 92, № 3-4. − Pp. 115-120.
- 6. Технология переработки возгонов электронно-лучевого переплава ниобия [Текст] / *А. Г. Уполовникова*, В. М. Чумарев, Л. Ю. Удоева, В. П. Марьевич // Химическая технология: тез. докл. междунар. конф. по химической технологии XT' 07, Москва-Ташкент. — Т. 4. — М.: ЛЕНАНД. — 2007. — С. 396.

- 7. Применение переменного тока в технологии переработки кобальтсодержащих сплавов на никелевой основе [Текст] / О. Г. Кузнецова, В. А. Брюквин, П. В. Ермуратский, В. М. Парецкий // Электрометаллургия. 2009. \mathbb{N}_2 9. С. 9-14.
- 8. *Палант, А. А.* Химическое обогащение танталовых концентратов, получаемых при переработке карбидных отходов твердых сплавов [Текст] / А. А.Палант // Металлы. 2008. № 4. С. 43-45.
- 9. *Колобов*, Г. А. Металлургия редких металлов. Часть 2. Вторичный молибден [Текст] : учеб. пособие / Г. А. Колобов. Запорожье : ЗГИА, 2005. 27 с. Библиогр. : с. 26.
- 10. Способ производства металлических слитков высокой чистоты [Текст] : пат. 480332 Япония: МКИ⁵ С 22 В 9/22, С 22 С 1/02. / *Киёмидзу Сиюки*, Кавада Тосиаки, Акасаки Такэси; заявитель и патентообладатель Ниппон кочё к.к. 194172 ; заявл. 23.07.90 ; опубл. 13.03.92 // Кокай токкё кохо. Сер. 3 (4). 1992. 22. С. 175-179.
- 11. *Макаров*, Ф. В. Исследование процесса переработки техногенного молибденового сырья [Текст] / Ф. М. Макаров, А. Н. Дьяченко // Проблемы геологии и освоения недр: труды междунар. науч. симп., 1-5 апреля 2002. г. Томск. Томск: изд-во НТЛ. 2002. С. 493-494.
- 12. Переработка лома молибдена методом высокотемпературного окисления [Текст] / *А. А. Гусев*, И. Е. Аброськин, А. Г. Авакумов, В. Н. Варыгин // Химическая технология. 2007. № 7. С. 308-310.
- 13. Способ переработки материалов с низким содержанием молибдена и вольфрама [Текст] : пат. 2002839 Рос. Федерация: МКИ⁵ С 22 В 34/34 / *Б. М. Тараканов*, В. А. Кренев, А. В. Сергеев и др. ; заявитель и патентообладатель Ин-т общей и неорган. химии им. С. Н. Курнакова РАН. № 5054006/02 ; заявл. 13.07.92 ; опубл.15.11.93. Бюл. №41-42.
- 14. *Носкова, О. А.* Научные основы метода переработки вторичного сырья тугоплавких металлов путем хлорирования в среде диметилформамида [Текст] / О. А. Носкова, Н. Ф. Дробот, В. А. Кренев // Металлургия цветных и редких металлов : российско-индийский симп., Москва, 2002: сб. статей. М., 2002. С. 282-289.
- 15. *Макаров, Ф. В.* Исследование процесса переработки молибденсодержащих отходов методом фторирования [Текст] / Ф. В. Макаров, С. В. Лукьянец, Д. Н. Алексеев // Проблемы геологии и освоения недр: труды междунар. науч. симп., 1-5 апреля 2002 г. Томск. Томск: изд-во НТЛ. 2002. С. 494-495.
- 16. *Макаров*, Ф. В. Переработка металлических отходов молибдена фторированием элементным фтором [Текст] / Ф. В. Макаров, Г. Г. Андреев, Т. И. Гузеева // Известия Томского политехн. ун-та. − 2004. − 307, № 3. − С. 79-83, 187.
- 17. Extraction of molybdenum from high-impurity ferromolybdenum by roasting with Na₂CO₃ and CaO and leaching with water [Text] / *Shi Lihna*, Wang Xue-Wen, Wang Ming-Yu etc. // Hydrometallurgy. − 2011. − 108, № 3-4. − Pp. 214-219.
- 18. *Мальований, М. С.* Утилізація молібденовмісних відходів виробництва електричних ламп [Текст] / М. С. Мальований // Металлургическая и горнорудная промышленность. 2000. № 3 (198). С. 108-111.
- 19. Способ регенерации молибдена и кислот из отработанного раствора травления молибденовых кернов в производстве электроламп и электровакуумных приборов и установка для его осуществления [Текст]: пат. 2376396 Рос. Федерация: МПК С 22 В 34/34 (2006.01), С 22 В 3/22 (2006.01) / Салахов А. А., Петрова Е. А., Парфенов А. Н., Мозгунов А. П., ; заявитель и патентообладатель «ООО Электрохимия». № 2008110878/02; заявл. 24.03.08 ; опубл. 20.12.09.
- 20. Развитие сорбционных методов для разработки чистых технологий получения соединений некоторых тугоплавких металлов при переработке отходов [Текст] / *Н. А. Оспанов*, Э. И. Гедгагов, Е. А. Оспанов и др. // Рециклинг, переработка отходов и чистые технологии: сб. материалов междунар. науч.-практ. конф., 18 октября 2011 г. Москва. М., 2011. С. 127-131.

- 21. *Kholmogorov*, *A. G.* A review of the use of ion exchange for molybdenum recovery in Russia [Text] / A. G. Kholmogorov, O. N. Kononova, O. N. Panchenko // Can. Met. Quart. 2004. 43., № 3. Pp. 297-303.
- 22. *Палант*, А. А. Электрохимическая переработка металлических отходов вольфрама, молибдена и рения в аммиачных электролитах под действием переменного тока [Текст] / А. А. Палант, О. М. Грачева, В. А. Брюквин // Неделя металлов в Москве, 13-17 ноября 2006 г.: сб. трудов. М.: ВНИИМЕТМАШ, 2007. С. 433-437.
- 23. Direct leaching of molybdenum and cobalt from spent hydrodesulphurization catalyst with sulphuric acid [Text] / *S.P. Barik*, Kyung-Ho Park, P.K. Parhi, J.T. Park // Hydrometallurgy. 2012. 111-112. Pp. 46-51.
- 24. *Колобов, Г. А.* Металлургия редких металлов. Часть 8. Вторичные редкоземельные металлы [Текст] : учеб. пособие / Г. А. Колобов. Запорожье : 3Γ ИА, 2009. 45 с. Библиогр.: с. 41-44.
- 25. *Su-ling, Wang*. Исследования по извлечению и производству редких земель из скрапа железных сплавов [Text] / Wang Su-ling, Wang Yi-jun // Rare Metals and Cem. Carbides. 2009. 37, № 2. Pp. 26-27, 46.
- 26. Rare earths recovery from NiMH spent batteries [Text] / *L. Pietrelli*, B. Bellomo, D. Fontana, M. R. Montereali // Hydrometallurgy. 2002. 66, № 1-3. Pp. 135-139.
- 27. *Resende, L. V.* Study of the recovery of rare earth elements from computer monitor scraps [Text] / L. V. Resende, C. A. Morais // Miner. Eng. − 2010. − 23, № 3. − Pp. 277-280.
- 28. Фторидная технология получения сплавов на основе редкоземельных металлов для производства высокоэнергетических постоянных магнитов [Текст] / В. Л. Софронов, А. С. Буйновский, А. Н. Жиганов и др. // Цветные металлы. – 2012. – № 1. – С. 23-27.
- 29. Магнитная сепарация шлаков производства сплавов P3M Fe (Co) В и лигатур P3M Fe [Текст] / В.Л.Софронов, А.С.Буйновский, Ю.Н.Макасеев и др. // Изв.Томского политехн.ун-та. 2012. 320, №3. С. 41-44.
- 30. *Копырин, А. А.* Получение оксида неодима из отходов производства постоянных магнитов на основе неодим-железо-бор [Текст] / А. А. Копырин, Н. В. Зоц, Д. С. Андреев // Химическая технология: тез. докл. междунар. конф. по химической технологии ХТ 07, Москва-Ташкент. Т. 4. М.: ЛЕНАНД. 2007. С. 339-340.
- 31. Изучение и практика селективного выщелачивания соляной кислотой редкоземельных металлов из скрапа NdFeB сплавов [Текст] / *Wang Yi-jun*, Liu Yu-hui, Weng Guo-ging etc. // Rare Metals and Cem. Carbides. 2007. 35, № 2. Pp. 25-27.
- 32. *Zhang, Xuan-xu*. Новый процесс извлечения P3M по схеме электровосстановление- жид-костная экстракция реагентом P507 [Text] / Xuan-xu Zhang, Dang-hua Yu, Lian-ping Guo // Copper. Eng. 2010. № 1. Pp. 66-69.
- 33. Extraction of rare earth elements as oxides from a neodymium magnetic sludge [Text] / *M. Na-kamoto*, K. Kubo, Y. Katayama etc. // Met. and Mater. Trans. 2012. 43, № 3. Pp. 468-476.
- 34. *Герасимова*, Л.Г. Сульфатный способ переработки РЗМ отходов [Текст] / Л.Г.Герасимова, А.И.Николаев // Цветные металлы. 2012. №3. С.83-86.
- 35. Метод переработки шлифотходов от производства постоянных магнитов [Текст] : пат. 2431691 Рос.Федерация: МПК С 22 В 59/00 (2006. 01), С 22 В 3/08 (2006.01). / Зоц Н. В., Глущенко Ю. Г., Шестаков С. В. и др. ; заявитель и патентообладатель ОАО «Российские редкие металлы». № 2010120490/02 ; заявл. 13.05.10 ; опубл. 20.10.11.
- 36. Способ экстракции редкоземельных элементов иттрия (III), церия (III) и эрбия (III) из водных растворов [Текст]: пат. 2441087 Рос. Федерация: МПК С 22 В 59/00 (2006. 01), С 22 В 3/26 (2006.01) / Д. Е. Чирксм, Т. Е. Литвинова, Д. С. Луцкий и др.; заявитель и патентообладатель С.-Петербург. гос. горный ин-т (ТУ). № 2010154737/02; заявл. 30.12.10; опубл. 27.01.12.
- 37. Способ извлечения ионов эрбия из водных растворов с применением додецилсульфата натрия [Текст] : пат. 2440853 Рос. Федерация: МПК В 03 Д 1/00 (2006. 01), С 22 В 59/00 (2006.01) / Лобачева О. Л., Чиркст Д. Э., Берлинский И. В., Федорова Т. С. ; заявитель и

- патентообладатель С.-Петербург. гос. горный ин-т (ТУ). № 2009140654/03 ; заявл. 02.11.09 ; опубл. 27.01.12.
- 38. Способ переработки уран-молибденовой композиции [Текст] : пат. 2395857 Рос. Федерация: МПК G 21 C 19 (2006. 01) / *Бухарин А. Д.*, Денискин В. П., Колесников Б. П. и др. заявитель и патентообладатель ФГУП «НИИ НПО Луч». № 2009102464/06 ; заявл. 26.01.09 ; опубл. 27.07.10.
- 39. Способ переработки уранфторсодержащих отходов [Текст]: пат. 2303074 Рос. Федерация: МПК С 22 В 60/02 (2006. 01), G 21 F 9/28 (2006.01). / Тинин В. В., Дорда Ф. А., Балахонов В. Г. и др.; заявитель и патентообладатель ФГУП «Сибирский химический комбинат». № 2005128352/02; заявл. 12.09.05; опубл. 20.07.07.
- 40. Способ получения оксида урана при переработке урановых твэлов [Текст] : пат. 2363998 Рос. Федерация: МПК G 21 C 19/44 (2006. 01), C 01 G 43/01 (2006.01) / Веркулич А. Ю., Денискин В. П., Звонков А. А. и др. ; заявитель и патентообладатель ФГУП «НИИ НПО Луч». № 2007125407/15 ; заявл. 05.07.07 ; опубл. 10.08.09.
- 41. Способ извлечения америция в виде диоксида америция [Текст] : пат. 2335554 Рос. Федерация: МПК С 22 В 60/02 (2006. 01), С 22 В 3/20 (2006.01) / Гаврилов П. М., Деменко А. А., Евстафьев А. А. и др. ; заявитель и патентообладатель ФГУП «Сибирский химический комбинат». № 2006139856/02 ; заявл. 10.11.06 ; опубл. 10.10.08.

Стаття надійшла до редакції 09.10.2012 р. Рецензент, проф. В.П. Грицай