УДК 661.665:546.2

Skachkov V. A., as. prof., c. t. s., Ivanov V. I., sen. st. sci., Nesterenko T. N., as. prof., c. t. s., Kirichenko A. G., as. prof., c. t. s.

ABOUT THE DEPOSITION OF BORON FROM THE GAS PHASE

Zaporozhe state engineering academy, department of metallurgy

Thermal decomposition of hydride boron is a difficult multistage process and in simplified can be presented by the following equations:

$$B_2 H_6 \Longrightarrow 2B H_3 ; \tag{1}$$

$$aBH_3 + bB_2H_6 \Longrightarrow B_xH_y + zH_2 ; \qquad (2)$$

$$B_x H_y \Longrightarrow xB + 0.5 y H_2 . \tag{3}$$

Proceeding from the suggested mechanism, the process rate can be limited by either dissociation of B_2H_6 or decomposition of intermediate reaction products on the substrate deposition.

Dissociation of rate B_2H_6 (V_{dis}) in depending on process temperature and initial component concentration is determined by equation:

$$V_{dis} = A \cdot \exp\left(-\frac{E \cdot a}{R \cdot T}\right) \cdot \left[\tilde{N}_{B_2 H_6}\right] , \qquad (4)$$

where A, E – before-exponent and energy of activation for dissociation process; $\left\lfloor \tilde{N}_{B_2H_6} \right\rfloor$ – a concentration of B_2H_6 .

In the reactor of decomposition of flow-type a reaction is implemeted:

$$B_2 H_6 \Longrightarrow 2B + 3H_2 \ . \tag{5}$$

For a reaction (2) in absence of heterogeneous processes the model of running reactor of cylindrical type will be characterized by the system of equations:

$$\frac{d}{dz} \left(U \cdot C_{B_2 H_6} \right) + \frac{2R_{int} \cdot \xi \cdot \beta \cdot k^r \cdot C_{B_2 H_6}}{\left(R_{ext}^2 - R_{int}^2 \right) \cdot \left(\xi \cdot k^r + \beta \right)} = 0 \quad ; \tag{6}$$

$$\frac{d}{dz}\left(U\cdot C_{H_2}\right) + \frac{2R_{int}\cdot\xi\cdot\beta\cdot k^r\cdot C_{H_2}}{\left(R_{ext}^2 - R_{int}^2\right)\cdot\left(\xi\cdot k^r + \beta\right)} = 0 \quad , \tag{7}$$

where U – rate of gas stream along the axis of reactor; z – a co-ordinate, directed along the axis of reactor; R_{ext} , R_{int} – an outward and internal radius of reactor; ξ , β , k^r – constants, determined by the experienced way.

A model, presented by the system of equations (6)-(7), allows to calculate kinetic descriptions of deposition process of the boron on the heated surfaces.

Reference:

1. Современные композиционные материалы / Под ред. И. Браутман. – М. : Мир, 1970. – 672 с.

2. Жигач, А. Ф. Химия гидридов [Текст] / А. Ф.Жигач, Д. С. Станисевич. – Л. : Химия, 1969. – 676 с.